A Mouse Pointer Random Number Generator


 

Move the mouse randomly in the field to the left to generate random numbers.
Numbers are generated based on the position where the mouse changes horizontal or vertical direction.
In custom mode, you may use any subset of special characters, or create any custom character set.  Including multiple copies of characters such as digits increases their representation in the output.





       
reset

 

        (adds more computer-generated pseudorandomness)
(keeps the script from slowing down at high n) | remember to show hidden output

trim output to:  | | remove line breaks | undo

analyze (show hidden output first)


show pixels (show hidden output first) | hide pixels
Converts the digits above to pixels.  It may take a few seconds, and will slow down the page while visible.  Requires at least 40,000 binary, hexadecimal, decimal, or base64 digits.



Notes

The script takes the coordinates of the mouse pointer in the 256 × 256 pixel field, converts them to two 8-bit binary numbers, concatenates them, then combines them with a 16-bit computer-generated pseudorandom number using the XOR operator.  This results in a high degree of randomness, but is rather slow.  To speed up the process, the bits of the original mouse coordinates are shuffled using the Fisher–Yates algorithm, then combined with a new pseudorandom number.  This process is repeated a random number of times for each mouse position, the number being between 1 and 2000 for the ×1000 speed, and so on.

The raw binary output may be converted to hexadecimal, decimal, base64, or a custom character set.  A few simple tests of randomness may be performed on the binary output; more may be performed with the NIST suite as described below.


References

A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,
accompanying the NIST Statistical Test Suite.
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software

See also http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/cusumtes.htm (more recent) which has a slightly different, and seemingly more consistent, equation for the cumulative sum p-value.  However, the values given in the examples actually use this equation ( = the published equation - 1 ):

Random Number Generators:  An Evaluation and Comparison of Random.org and Some Commonly Used Generators.
https://www.random.org/analysis/
(Analysis2005.pdf by Charmaine Kenny, which corrects errors in the NIST publication.)

https://en.wikipedia.org/wiki/Error_function

where p = 0.3275911, a1 = 0.254829592, a2 = -0.284496736, a3 = 1.421413741, a4 = -1.453152027, a5 = 1.061405429.
The complementary error function erfc(z) = 1 - erf(z).
The standard normal (cumulative distribution) function:

The NIST Statistical Test Suite

You may save binary number output of the random number generator to a plain text file to use as input for the NIST Statistical Test Suite.

The suite is very easy to install and run on Linux, but the documentation in section 5 of the NIST document referenced above needs some clarification.  The current download file is sts-2_1_2.zip.  Compile it with gcc as follows, which should already be installed on Fedora-based systems, and is easily installed via the Ubuntu Software Center.  First, edit the makefile text file per the documentation, with the path to gcc, and the folder (sts-2.1.2) that contains makefile.  Then run the following commands:

cd /<path to containing folder>/sts-2.1.2/
make

The executable file assess should now be present in the folder.

The command to run the program is

./assess <bitstream length>

such as ./assess 1000000 (note the dot and slash!).  Run at least 10 bitstreams to get complete results (you will be prompted for the number).  The number of binary digits in the input text file must be at least the length of the bitstream × the number of bitstreams; for example, ./assess 3000000 × 10 bitstreams = 30,000,000 total digits.  The Universal and ApproximateEntropy tests seem to need 1,000,000 bits per stream to work; RandomExcursions also needs sufficient bits and streams to generate full output.  Per the documentation, the uniformity p-value is undefined if fewer than 10 sequences are processed, and at least 55 sequences must be processed to derive statistically meaningful results for the uniformity of the individual p-values.  The overall test results are saved to sts-2.1.2/experiments/AlgorithmTesting/finalAnalysisReport.txt; be sure to rename it to save it.  P-values for the individual tests are saved to sts-2.1.2/experiments/AlgorithmTesting/<test name>/results.txt; more detailed information is found in stats.txt.

I ran the suite using the default parameters on 100,000,000 digits, generated with the script above at ×1000 speed.  100,000,000 digits crashed Firefox, so I generated 20,000,000 at a time and appended them to a text file (101.2 MB).  I ran them first as 10 streams of 10,000,000, then as 100 streams of 1,000,000.  All the tests met the minimum p-values and pass rates (if they do not, they are marked with an asterisk).



------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
   generator is <100Million.txt>
------------------------------------------------------------------------------
 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  STATISTICAL TEST
------------------------------------------------------------------------------
  1   0   0   0   0   0   2   2   4   1  0.066882     10/10      Frequency
  0   1   2   0   3   1   1   1   1   0  0.534146     10/10      BlockFrequency
  1   0   1   2   0   1   1   1   1   2  0.911413      9/10      CumulativeSums
  1   0   1   0   2   2   0   1   1   2  0.739918     10/10      CumulativeSums
  1   0   0   0   0   2   2   1   3   1  0.350485     10/10      Runs
  0   1   1   1   0   4   0   1   1   1  0.213309     10/10      LongestRun
  0   2   2   0   1   2   0   0   2   1  0.534146     10/10      Rank
  1   0   1   0   2   1   0   3   1   1  0.534146     10/10      FFT
  1   2   1   0   0   2   2   0   0   2  0.534146     10/10      NonOverlappingTemplate
  1   2   2   0   1   0   1   0   1   2  0.739918     10/10      NonOverlappingTemplate
  1   1   1   0   3   1   0   0   2   1  0.534146     10/10      NonOverlappingTemplate
  2   1   1   0   1   1   0   1   1   2  0.911413      9/10      NonOverlappingTemplate
  1   0   2   2   2   0   0   0   2   1  0.534146      9/10      NonOverlappingTemplate
  2   1   1   0   1   2   0   0   1   2  0.739918     10/10      NonOverlappingTemplate
  1   1   1   1   2   0   2   0   1   1  0.911413     10/10      NonOverlappingTemplate
  1   0   1   0   0   3   1   4   0   0  0.035174     10/10      NonOverlappingTemplate
  1   3   0   1   0   0   1   0   2   2  0.350485     10/10      NonOverlappingTemplate
  0   1   1   0   1   1   3   0   3   0  0.213309     10/10      NonOverlappingTemplate
  0   2   1   1   0   1   0   1   3   1  0.534146     10/10      NonOverlappingTemplate
  0   0   2   1   3   0   0   1   2   1  0.350485     10/10      NonOverlappingTemplate
  2   2   0   0   1   0   2   2   0   1  0.534146     10/10      NonOverlappingTemplate
  1   0   0   2   1   3   1   0   1   1  0.534146     10/10      NonOverlappingTemplate
  1   0   0   0   2   2   2   1   2   0  0.534146     10/10      NonOverlappingTemplate
  0   0   2   1   0   1   1   1   3   1  0.534146     10/10      NonOverlappingTemplate
  0   1   1   2   3   1   1   0   1   0  0.534146     10/10      NonOverlappingTemplate
  1   4   1   1   1   1   0   0   1   0  0.213309     10/10      NonOverlappingTemplate
  1   0   1   1   0   3   2   1   1   0  0.534146     10/10      NonOverlappingTemplate
  1   2   1   1   0   1   2   1   0   1  0.911413     10/10      NonOverlappingTemplate
  1   1   2   0   3   1   0   1   0   1  0.534146     10/10      NonOverlappingTemplate
  1   1   2   0   2   2   0   0   1   1  0.739918     10/10      NonOverlappingTemplate
  1   1   1   1   2   0   1   2   1   0  0.911413      9/10      NonOverlappingTemplate
  2   1   0   0   1   1   1   1   1   2  0.911413     10/10      NonOverlappingTemplate
  0   0   0   0   3   1   1   1   2   2  0.350485     10/10      NonOverlappingTemplate
  1   0   0   2   1   1   3   1   1   0  0.534146     10/10      NonOverlappingTemplate
  2   0   2   0   2   0   2   0   1   1  0.534146     10/10      NonOverlappingTemplate
  1   2   0   3   1   1   1   0   0   1  0.534146     10/10      NonOverlappingTemplate
  2   0   0   2   1   0   1   1   1   2  0.739918     10/10      NonOverlappingTemplate
  0   0   2   1   0   0   2   2   0   3  0.213309     10/10      NonOverlappingTemplate
  0   0   2   2   3   1   0   1   1   0  0.350485     10/10      NonOverlappingTemplate
  0   2   0   0   2   1   1   1   2   1  0.739918     10/10      NonOverlappingTemplate
  1   1   0   0   0   0   2   1   2   3  0.350485     10/10      NonOverlappingTemplate
  0   3   0   2   2   1   0   1   1   0  0.350485     10/10      NonOverlappingTemplate
  1   1   0   3   0   1   1   1   0   2  0.534146     10/10      NonOverlappingTemplate
  2   1   2   1   2   2   0   0   0   0  0.534146     10/10      NonOverlappingTemplate
  1   4   0   0   1   1   1   0   1   1  0.213309     10/10      NonOverlappingTemplate
  1   0   1   0   5   0   0   1   1   1  0.017912     10/10      NonOverlappingTemplate
  3   0   0   1   2   1   1   0   0   2  0.350485     10/10      NonOverlappingTemplate
  3   1   0   0   3   1   0   1   1   0  0.213309      9/10      NonOverlappingTemplate
  2   1   3   0   1   0   0   1   1   1  0.534146     10/10      NonOverlappingTemplate
  3   0   1   2   1   0   1   0   1   1  0.534146     10/10      NonOverlappingTemplate
  1   1   0   0   0   2   2   2   1   1  0.739918     10/10      NonOverlappingTemplate
  0   0   0   2   2   1   2   1   0   2  0.534146     10/10      NonOverlappingTemplate
  0   0   0   0   0   2   2   1   2   3  0.213309     10/10      NonOverlappingTemplate
  1   0   2   0   0   1   3   0   1   2  0.350485     10/10      NonOverlappingTemplate
  0   1   0   1   1   0   1   2   2   2  0.739918     10/10      NonOverlappingTemplate
  1   0   0   0   1   3   3   0   2   0  0.122325     10/10      NonOverlappingTemplate
  0   0   1   1   2   2   0   3   1   0  0.350485     10/10      NonOverlappingTemplate
  1   4   1   0   2   0   1   0   1   0  0.122325     10/10      NonOverlappingTemplate
  0   0   0   1   1   1   2   1   1   3  0.534146     10/10      NonOverlappingTemplate
  0   0   0   0   2   2   0   3   2   1  0.213309     10/10      NonOverlappingTemplate
  0   1   2   1   0   2   3   0   0   1  0.350485     10/10      NonOverlappingTemplate
  1   0   3   1   0   1   0   1   3   0  0.213309     10/10      NonOverlappingTemplate
  1   1   3   2   0   1   0   1   0   1  0.534146     10/10      NonOverlappingTemplate
  1   1   0   2   0   1   0   1   2   2  0.739918     10/10      NonOverlappingTemplate
  0   1   3   1   1   1   1   0   1   1  0.739918     10/10      NonOverlappingTemplate
  1   1   1   1   0   1   1   2   1   1  0.991468     10/10      NonOverlappingTemplate
  1   0   1   1   1   3   0   0   2   1  0.534146     10/10      NonOverlappingTemplate
  2   1   2   1   0   2   1   0   0   1  0.739918     10/10      NonOverlappingTemplate
  2   1   3   1   1   0   0   1   0   1  0.534146     10/10      NonOverlappingTemplate
  1   2   0   1   1   0   0   2   1   2  0.739918      9/10      NonOverlappingTemplate
  1   4   0   0   0   0   3   1   0   1  0.035174     10/10      NonOverlappingTemplate
  2   0   2   1   1   1   1   1   1   0  0.911413     10/10      NonOverlappingTemplate
  0   0   1   0   1   0   2   3   2   1  0.350485     10/10      NonOverlappingTemplate
  0   2   1   1   1   2   2   0   0   1  0.739918     10/10      NonOverlappingTemplate
  1   1   1   0   2   2   0   1   2   0  0.739918     10/10      NonOverlappingTemplate
  1   2   0   2   2   0   1   1   1   0  0.739918      9/10      NonOverlappingTemplate
  2   0   1   0   0   1   1   1   1   3  0.534146     10/10      NonOverlappingTemplate
  1   1   1   1   1   1   0   0   2   2  0.911413     10/10      NonOverlappingTemplate
  2   1   1   0   1   1   0   2   0   2  0.739918      9/10      NonOverlappingTemplate
  0   1   1   0   0   0   3   2   3   0  0.122325     10/10      NonOverlappingTemplate
  0   1   0   0   1   2   1   1   1   3  0.534146     10/10      NonOverlappingTemplate
  1   0   0   1   1   2   2   1   1   1  0.911413     10/10      NonOverlappingTemplate
  1   2   1   0   0   2   2   0   0   2  0.534146     10/10      NonOverlappingTemplate
  1   1   0   0   0   2   2   2   1   1  0.739918     10/10      NonOverlappingTemplate
  1   2   0   1   1   0   3   0   1   1  0.534146     10/10      NonOverlappingTemplate
  2   2   1   1   0   1   2   0   1   0  0.739918     10/10      NonOverlappingTemplate
  0   1   0   0   1   3   0   2   3   0  0.122325     10/10      NonOverlappingTemplate
  1   0   1   3   1   1   0   1   1   1  0.739918     10/10      NonOverlappingTemplate
  1   1   0   1   0   1   0   1   3   2  0.534146     10/10      NonOverlappingTemplate
  0   0   0   3   2   1   0   0   1   3  0.122325     10/10      NonOverlappingTemplate
  1   5   1   0   2   0   1   0   0   0  0.008879     10/10      NonOverlappingTemplate
  3   2   0   0   0   0   0   2   3   0  0.066882     10/10      NonOverlappingTemplate
  2   2   1   0   1   2   0   0   0   2  0.534146     10/10      NonOverlappingTemplate
  4   0   3   0   1   1   0   0   0   1  0.035174      9/10      NonOverlappingTemplate
  0   2   1   0   2   0   2   0   2   1  0.534146     10/10      NonOverlappingTemplate
  2   1   1   1   1   0   3   0   1   0  0.534146     10/10      NonOverlappingTemplate
  2   0   2   0   2   2   1   1   0   0  0.534146     10/10      NonOverlappingTemplate
  2   1   2   1   1   0   2   0   1   0  0.739918     10/10      NonOverlappingTemplate
  1   2   1   1   1   3   0   0   1   0  0.534146     10/10      NonOverlappingTemplate
  0   3   1   2   1   3   0   0   0   0  0.122325     10/10      NonOverlappingTemplate
  1   2   1   1   0   1   0   0   2   2  0.739918     10/10      NonOverlappingTemplate
  2   0   2   0   1   1   2   0   1   1  0.739918     10/10      NonOverlappingTemplate
  3   2   0   1   0   1   0   1   1   1  0.534146     10/10      NonOverlappingTemplate
  0   1   1   3   0   1   1   1   1   1  0.739918     10/10      NonOverlappingTemplate
  0   1   2   1   3   1   0   1   1   0  0.534146     10/10      NonOverlappingTemplate
  3   1   0   1   0   0   0   1   1   3  0.213309      9/10      NonOverlappingTemplate
  0   2   1   1   3   1   0   1   0   1  0.534146     10/10      NonOverlappingTemplate
  1   0   0   2   0   1   0   1   3   2  0.350485     10/10      NonOverlappingTemplate
  2   1   3   1   1   1   0   1   0   0  0.534146     10/10      NonOverlappingTemplate
  0   0   0   2   3   1   1   1   0   2  0.350485     10/10      NonOverlappingTemplate
  1   2   1   0   0   3   1   1   0   1  0.534146     10/10      NonOverlappingTemplate
  2   1   1   2   2   0   1   0   0   1  0.739918     10/10      NonOverlappingTemplate
  0   1   2   2   0   2   1   1   1   0  0.739918     10/10      NonOverlappingTemplate
  1   0   2   0   1   2   0   1   3   0  0.350485     10/10      NonOverlappingTemplate
  0   0   1   1   2   2   0   2   1   1  0.739918     10/10      NonOverlappingTemplate
  2   1   2   1   1   0   0   0   2   1  0.739918     10/10      NonOverlappingTemplate
  0   2   0   1   2   0   2   0   3   0  0.213309     10/10      NonOverlappingTemplate
  0   0   0   2   3   0   0   2   1   2  0.213309     10/10      NonOverlappingTemplate
  1   3   1   0   2   2   0   1   0   0  0.350485     10/10      NonOverlappingTemplate
  0   0   1   1   3   1   1   1   2   0  0.534146     10/10      NonOverlappingTemplate
  1   0   0   5   0   0   3   1   0   0  0.002043     10/10      NonOverlappingTemplate
  2   0   1   0   0   1   1   1   1   3  0.534146     10/10      NonOverlappingTemplate
  1   1   0   2   0   1   1   1   2   1  0.911413     10/10      NonOverlappingTemplate
  0   2   2   0   0   0   2   0   0   4  0.035174     10/10      NonOverlappingTemplate
  1   1   2   1   1   0   2   1   0   1  0.911413     10/10      NonOverlappingTemplate
  0   0   3   1   0   1   2   1   1   1  0.534146     10/10      NonOverlappingTemplate
  3   1   2   1   1   0   1   0   1   0  0.534146     10/10      NonOverlappingTemplate
  0   1   0   1   3   0   1   1   2   1  0.534146     10/10      NonOverlappingTemplate
  1   4   0   2   0   1   0   0   1   1  0.122325     10/10      NonOverlappingTemplate
  1   0   0   1   1   0   1   3   1   2  0.534146     10/10      NonOverlappingTemplate
  0   0   2   0   2   0   2   1   2   1  0.534146     10/10      NonOverlappingTemplate
  0   2   1   0   1   1   2   0   1   2  0.739918     10/10      NonOverlappingTemplate
  0   2   3   0   0   0   1   0   2   2  0.213309     10/10      NonOverlappingTemplate
  2   3   0   1   2   0   1   0   0   1  0.350485     10/10      NonOverlappingTemplate
  1   1   2   0   3   0   0   2   1   0  0.350485     10/10      NonOverlappingTemplate
  1   1   1   1   0   0   1   2   0   3  0.534146     10/10      NonOverlappingTemplate
  0   2   1   1   2   2   1   0   0   1  0.739918     10/10      NonOverlappingTemplate
  1   0   2   0   1   1   1   2   2   0  0.739918     10/10      NonOverlappingTemplate
  2   0   0   2   1   0   0   1   1   3  0.350485     10/10      NonOverlappingTemplate
  2   0   3   0   0   2   2   0   0   1  0.213309     10/10      NonOverlappingTemplate
  1   2   0   0   2   0   3   1   1   0  0.350485     10/10      NonOverlappingTemplate
  1   1   3   1   2   0   0   0   1   1  0.534146     10/10      NonOverlappingTemplate
  1   0   1   1   2   0   2   1   1   1  0.911413     10/10      NonOverlappingTemplate
  1   1   1   2   2   0   1   1   0   1  0.911413     10/10      NonOverlappingTemplate
  3   1   0   2   1   0   1   0   2   0  0.350485     10/10      NonOverlappingTemplate
  1   1   1   2   1   0   1   1   1   1  0.991468     10/10      NonOverlappingTemplate
  2   1   2   1   0   0   2   2   0   0  0.534146     10/10      NonOverlappingTemplate
  1   2   1   3   1   1   1   0   0   0  0.534146     10/10      NonOverlappingTemplate
  0   3   2   1   0   1   0   1   0   2  0.350485     10/10      NonOverlappingTemplate
  0   2   1   2   2   0   2   0   1   0  0.534146     10/10      NonOverlappingTemplate
  0   0   1   0   1   2   1   3   0   2  0.350485     10/10      NonOverlappingTemplate
  0   1   1   3   0   2   1   1   1   0  0.534146     10/10      NonOverlappingTemplate
  1   0   2   1   0   0   3   1   1   1  0.534146     10/10      NonOverlappingTemplate
  0   0   2   1   2   0   1   1   1   2  0.739918     10/10      NonOverlappingTemplate
  1   1   1   0   0   3   2   1   1   0  0.534146     10/10      NonOverlappingTemplate
  1   0   0   1   1   2   2   1   1   1  0.911413     10/10      NonOverlappingTemplate
  3   1   2   0   1   0   1   1   0   1  0.534146     10/10      OverlappingTemplate
  3   0   0   2   0   1   1   1   1   1  0.534146     10/10      Universal
  0   1   0   2   1   1   1   1   1   2  0.911413     10/10      ApproximateEntropy
  1   1   2   0   0   1   1   1   1   0     ----       8/8       RandomExcursions
  0   2   1   1   0   1   0   1   2   0     ----       8/8       RandomExcursions
  2   0   1   0   1   2   1   1   0   0     ----       7/8       RandomExcursions
  0   1   0   3   0   1   1   1   0   1     ----       8/8       RandomExcursions
  1   1   1   2   1   0   2   0   0   0     ----       8/8       RandomExcursions
  0   3   1   0   0   0   2   1   0   1     ----       8/8       RandomExcursions
  1   1   0   0   1   1   1   0   2   1     ----       8/8       RandomExcursions
  1   1   0   1   1   0   1   0   1   2     ----       8/8       RandomExcursions
  2   1   0   0   0   1   2   1   0   1     ----       8/8       RandomExcursionsVariant
  3   0   0   0   0   2   1   0   1   1     ----       8/8       RandomExcursionsVariant
  2   1   0   0   0   1   1   1   0   2     ----       7/8       RandomExcursionsVariant
  2   0   1   0   0   2   1   1   1   0     ----       7/8       RandomExcursionsVariant
  1   2   1   0   1   1   0   0   1   1     ----       7/8       RandomExcursionsVariant
  1   2   2   1   0   1   0   0   0   1     ----       8/8       RandomExcursionsVariant
  2   1   0   2   0   1   0   1   1   0     ----       8/8       RandomExcursionsVariant
  0   1   0   1   0   3   1   0   0   2     ----       8/8       RandomExcursionsVariant
  0   0   2   1   0   1   1   0   2   1     ----       8/8       RandomExcursionsVariant
  0   2   0   1   0   3   0   1   1   0     ----       8/8       RandomExcursionsVariant
  1   0   0   3   0   1   1   1   0   1     ----       8/8       RandomExcursionsVariant
  1   2   0   0   0   2   1   1   1   0     ----       8/8       RandomExcursionsVariant
  1   2   0   1   0   1   1   0   1   1     ----       7/8       RandomExcursionsVariant
  1   3   1   0   0   0   1   0   0   2     ----       7/8       RandomExcursionsVariant
  2   2   1   0   0   1   0   0   1   1     ----       7/8       RandomExcursionsVariant
  2   1   2   0   0   1   0   0   0   2     ----       8/8       RandomExcursionsVariant
  3   0   0   2   1   0   0   1   0   1     ----       8/8       RandomExcursionsVariant
  3   0   1   2   0   1   0   0   0   1     ----       8/8       RandomExcursionsVariant
  0   0   4   1   1   1   2   1   0   0  0.122325     10/10      Serial
  0   1   2   1   2   2   1   1   0   0  0.739918     10/10      Serial
  0   0   2   2   1   1   0   1   1   2  0.739918     10/10      LinearComplexity


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 8 for a
sample size = 10 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 7 for a sample size = 8 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
   generator is <100Million.txt>
------------------------------------------------------------------------------
 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  STATISTICAL TEST
------------------------------------------------------------------------------
  8  13  11  15   4   4  12   8  15  10  0.108791     99/100     Frequency
  8  13   9  12  10  12   8   9   8  11  0.955835     99/100     BlockFrequency
  9  11  15   6  13   7  10   8  11  10  0.678686    100/100     CumulativeSums
 10   8  14  10   8   8  12  11   4  15  0.401199    100/100     CumulativeSums
 17   7   8  10   9  11  12   7  11   8  0.514124     99/100     Runs
 11  13   3   9  13   9   7  14  10  11  0.383827    100/100     LongestRun
  9   7  10   9  10   8   9  12  16  10  0.779188     99/100     Rank
  9  14   8  14  10   7  12  10  10   6  0.678686    100/100     FFT
 12   5   7  13  13   6  12   9   9  14  0.401199     99/100     NonOverlappingTemplate
  7  14  15   4  13  10   5   7  12  13  0.115387     98/100     NonOverlappingTemplate
 10  12   9  10  11  11   8  12  10   7  0.983453     99/100     NonOverlappingTemplate
 13  16   2  11   9   9   7  12   9  12  0.162606     99/100     NonOverlappingTemplate
 12  12   7  10   5  10  12  11   7  14  0.616305     99/100     NonOverlappingTemplate
  7  10  10   7  12  15  12   6  13   8  0.534146     99/100     NonOverlappingTemplate
 14  10   6   7   8   9   8  15  10  13  0.494392    100/100     NonOverlappingTemplate
 10   7  13   8   6   9  15  12   7  13  0.474986    100/100     NonOverlappingTemplate
  7  11   9  15  14  11   7   9  10   7  0.616305    100/100     NonOverlappingTemplate
  7   9  12  13  10  10  16   7   9   7  0.554420    100/100     NonOverlappingTemplate
  9   7   6  11  10   6  13   8  14  16  0.289667     99/100     NonOverlappingTemplate
  7   4   9  11  11  18   9   7  14  10  0.129620    100/100     NonOverlappingTemplate
 12   4  15  10   7   7   8  10  11  16  0.191687     99/100     NonOverlappingTemplate
  9   7   9  15   6  13   8   8  15  10  0.401199    100/100     NonOverlappingTemplate
 14   9   8   8  12   6   5  11  12  15  0.350485     98/100     NonOverlappingTemplate
 10  13  13  12   7  10   9   6  12   8  0.779188     99/100     NonOverlappingTemplate
 10  11   8  10  10  12  11   6   9  13  0.935716    100/100     NonOverlappingTemplate
 11   9   7  11  16  10  11  10   6   9  0.678686    100/100     NonOverlappingTemplate
  9  12   5  13  12   8  10   5  17   9  0.202268     99/100     NonOverlappingTemplate
 16  11   9  11  11   9  10   3   9  11  0.419021     99/100     NonOverlappingTemplate
  9   7  14   7  12  10  10  16   5  10  0.350485     98/100     NonOverlappingTemplate
  9  12  17   9  12   9   7   9   9   7  0.534146     98/100     NonOverlappingTemplate
 13   9  13   9  11   6   9  10  10  10  0.924076     98/100     NonOverlappingTemplate
  9  11  11   8  10   6  15  11   7  12  0.719747     98/100     NonOverlappingTemplate
  6  11   9  11  10  10  14   9   8  12  0.883171     99/100     NonOverlappingTemplate
  7  17   7  11   7  13  11   9  11   7  0.366918    100/100     NonOverlappingTemplate
 13   5   7   9  10  13  10  12   8  13  0.637119     99/100     NonOverlappingTemplate
 10   8  11  11  11   9   5  11   9  15  0.739918    100/100     NonOverlappingTemplate
 11  10  10   9   8  12  10   8  10  12  0.994250     98/100     NonOverlappingTemplate
 10  10  12  13   9  13   9   7  10   7  0.897763     99/100     NonOverlappingTemplate
  9  14   7   6   6  12  13  10   6  17  0.137282    100/100     NonOverlappingTemplate
 10  11  11  13   5  13  11   6  12   8  0.637119     99/100     NonOverlappingTemplate
  9  15   6  12   9   8   8   9  14  10  0.616305    100/100     NonOverlappingTemplate
  8   8  10   8   5  19  13  15   4  10  0.026948     99/100     NonOverlappingTemplate
  8  10  12  10  14  11   8  10  10   7  0.924076     98/100     NonOverlappingTemplate
  5   4  15  14   9   6   8  14  17   8  0.023545     99/100     NonOverlappingTemplate
 13   7  11   6   8  10  14  10   9  12  0.739918     98/100     NonOverlappingTemplate
  7   9  12   8   9  15  12   9   8  11  0.798139    100/100     NonOverlappingTemplate
  9   8   6  13  13  13  13   3  12  10  0.275709     99/100     NonOverlappingTemplate
 13  15   5   8  12   9  13  10   5  10  0.334538     98/100     NonOverlappingTemplate
 10   9  11  17  16   5   4   8  13   7  0.048716     97/100     NonOverlappingTemplate
 17  12  17   5   7  10  11   5   7   9  0.045675     98/100     NonOverlappingTemplate
  3  10   9  12  15  15  12   9   6   9  0.181557    100/100     NonOverlappingTemplate
  9  12   6  12   9  11   7  11  11  12  0.897763    100/100     NonOverlappingTemplate
  8   8  17   9   7  10  17  14   8   2  0.017912     97/100     NonOverlappingTemplate
 15   7   7  12  12   9   8   7   8  15  0.401199     97/100     NonOverlappingTemplate
 11   4   8   6  10  15  10  13  12  11  0.383827     97/100     NonOverlappingTemplate
  9  14   9   9   9   5   7  13  13  12  0.574903    100/100     NonOverlappingTemplate
  7   8   8  10   5  12  14  11  12  13  0.574903     98/100     NonOverlappingTemplate
 10  11  18   4   6  10   9  10  13   9  0.171867     99/100     NonOverlappingTemplate
  5   6  13   8  17   9   8  12   8  14  0.153763    100/100     NonOverlappingTemplate
  5  16  11   9  12   8   6  14  11   8  0.289667     99/100     NonOverlappingTemplate
 12  11   6   9  10  15   9   6  11  11  0.678686     99/100     NonOverlappingTemplate
  6   9  10  12   9   7  13  16  11   7  0.474986     99/100     NonOverlappingTemplate
  5  12  11  12  10  10  12  11   6  11  0.779188     99/100     NonOverlappingTemplate
 12   7  10   9  11  12  10   9  10  10  0.991468     99/100     NonOverlappingTemplate
  8   8  10  15  10   5  11  11  14   8  0.534146     99/100     NonOverlappingTemplate
  9  13   6   8  10  12   9  14  10   9  0.816537    100/100     NonOverlappingTemplate
 14  10   7   4   9   9  11  10  10  16  0.350485     99/100     NonOverlappingTemplate
 14  15   7  13   5  13   9   9   5  10  0.213309     98/100     NonOverlappingTemplate
 15   9   6  13  10   5  13  11   3  15  0.066882     99/100     NonOverlappingTemplate
 13  14  12  11  12   7   7   7  11   6  0.554420     98/100     NonOverlappingTemplate
  9   6  10  11   9  11  10   8  12  14  0.883171    100/100     NonOverlappingTemplate
 14   6  11  10  10  11   3  11   6  18  0.058984     99/100     NonOverlappingTemplate
  7   8   5  17   6  11   9  16  14   7  0.055361     99/100     NonOverlappingTemplate
  7  12  13  13   9   6  13   5  13   9  0.419021    100/100     NonOverlappingTemplate
 12  11  11   8   9  13   8   8   7  13  0.867692    100/100     NonOverlappingTemplate
  8   7  10  19   8   8   8  13   7  12  0.171867    100/100     NonOverlappingTemplate
  8  10  11   8  13  11  10  13   8   8  0.935716    100/100     NonOverlappingTemplate
 13   9   7  14   7   8  11   8   8  15  0.514124    100/100     NonOverlappingTemplate
 19   7  11   8  10   5   7  18   5  10  0.009535     97/100     NonOverlappingTemplate
 12  12   5  10  11   7  14   9  12   8  0.657933     99/100     NonOverlappingTemplate
  9   7   8   6  12   8   8  14  10  18  0.202268    100/100     NonOverlappingTemplate
 11  10  16   6  11  10   8  10  10   8  0.719747     99/100     NonOverlappingTemplate
 12   5   7  13  13   6  12   9   9  14  0.401199     99/100     NonOverlappingTemplate
 11  15   6  12   5  10  11  11   9  10  0.595549    100/100     NonOverlappingTemplate
 12   5   8  12  13  11  12   9   8  10  0.779188     98/100     NonOverlappingTemplate
 14  14  12  13  13   9   6   6   6   7  0.262249     97/100     NonOverlappingTemplate
 16   9  11   8   7   9  14   8   9   9  0.595549     99/100     NonOverlappingTemplate
 10  10  12   8   8  10   9  12  13   8  0.964295    100/100     NonOverlappingTemplate
 14   9  12   6  15  12   7   7  11   7  0.401199     99/100     NonOverlappingTemplate
  3  13  10   5   7   7  17  10  17  11  0.017912    100/100     NonOverlappingTemplate
  9   9  12   8   9  11  13  15   8   6  0.678686    100/100     NonOverlappingTemplate
 11   9   9   9  13  15  10  14   5   5  0.319084    100/100     NonOverlappingTemplate
 10   9  15  14   9  10   8   7  10   8  0.739918     99/100     NonOverlappingTemplate
 15  13   8  11  11   8   8  11   5  10  0.595549     98/100     NonOverlappingTemplate
  6  10   8  11   9  14  10  12   8  12  0.834308    100/100     NonOverlappingTemplate
  5   9  11   8   9  11  12  17   9   9  0.455937     98/100     NonOverlappingTemplate
 10   6   8  11  15   3   9  12  12  14  0.213309     98/100     NonOverlappingTemplate
 11   8   7  11   9  12  10  13  10   9  0.964295     99/100     NonOverlappingTemplate
  6  11  13   7  13   6   9  10  12  13  0.595549    100/100     NonOverlappingTemplate
 12  10  16   9  14  10   7   7  10   5  0.350485     99/100     NonOverlappingTemplate
 14  11   7  13   9  10  10   5  11  10  0.719747     98/100     NonOverlappingTemplate
  5   8  11  12  12  14  11   7  14   6  0.383827    100/100     NonOverlappingTemplate
 11   9  13  11   7   5  10  13  10  11  0.779188     99/100     NonOverlappingTemplate
  9   9  14   8  10  11  10  12  12   5  0.779188     99/100     NonOverlappingTemplate
  6   6  12  13  13  12  14   4   8  12  0.224821    100/100     NonOverlappingTemplate
 10  13   9   3   7   9  11  11  15  12  0.350485     99/100     NonOverlappingTemplate
  7  12  13   6   7  10   5  17   8  15  0.090936     98/100     NonOverlappingTemplate
  8  13   5   6  13  11  14  10  10  10  0.534146    100/100     NonOverlappingTemplate
  8  15   9   8   6  10  10  14  12   8  0.595549     98/100     NonOverlappingTemplate
  8  10   5  17   9   7   8  13  13  10  0.275709     99/100     NonOverlappingTemplate
 13   6   9  11  12   9  13   9   8  10  0.867692    100/100     NonOverlappingTemplate
  8  12  10  12  13   7  10   6  12  10  0.834308     99/100     NonOverlappingTemplate
 10   7  10   7   8  11  15  13  10   9  0.759756     99/100     NonOverlappingTemplate
  6  15  11  11  11  10  10   8  10   8  0.816537    100/100     NonOverlappingTemplate
 10   6   9  15   8  11   8  14   9  10  0.657933    100/100     NonOverlappingTemplate
 10   7  12   8   5   8   9  14  14  13  0.455937     99/100     NonOverlappingTemplate
 12   7  13   9  12  12   9   9   6  11  0.834308     96/100     NonOverlappingTemplate
  8  11   9  10  13  12  15   6   9   7  0.637119    100/100     NonOverlappingTemplate
  8  12  10  11  13  12  10   7   9   8  0.935716     99/100     NonOverlappingTemplate
  8  11   9   9  12  15   6  13   8   9  0.678686     99/100     NonOverlappingTemplate
 13   8   3  10  10  13  13  10  11   9  0.514124    100/100     NonOverlappingTemplate
  9   7   9  11   9   5  14  10  10  16  0.437274     98/100     NonOverlappingTemplate
  9   8  11   5   7  12  13  16   8  11  0.401199     98/100     NonOverlappingTemplate
 11  12  14   7  10   4  10   7  12  13  0.455937     99/100     NonOverlappingTemplate
 10   5  15  11   6  12  13  12   5  11  0.275709     98/100     NonOverlappingTemplate
  9  10   7  14   3   9  15  14  11   8  0.202268    100/100     NonOverlappingTemplate
 10  11   7  16  12  10   7   8  10   9  0.699313    100/100     NonOverlappingTemplate
  9  13  10  11  10  11   8  13  10   5  0.834308     98/100     NonOverlappingTemplate
 19   7  15   7  10   5  16   6   7   8  0.010988     99/100     NonOverlappingTemplate
 11  13  12  12   8   7   8   7   8  14  0.699313    100/100     NonOverlappingTemplate
  8  12   9  13  10  11   6   6  13  12  0.699313     99/100     NonOverlappingTemplate
 12   7  13   9   4  10   8  15  10  12  0.419021     97/100     NonOverlappingTemplate
  9  10   7  17  10   7  14  10   7   9  0.401199    100/100     NonOverlappingTemplate
  7  12  15   7  14   9   9   6  12   9  0.474986     98/100     NonOverlappingTemplate
  6   8  13  12  13  11  11   9   8   9  0.834308     99/100     NonOverlappingTemplate
  5  12   9   7  11  12  17  10  11   6  0.275709    100/100     NonOverlappingTemplate
  8  13   8   9  12  10   8  10  13   9  0.935716    100/100     NonOverlappingTemplate
 11   9  14   9   8   6  12   4  11  16  0.236810     99/100     NonOverlappingTemplate
 13   8   9   9   9  13   7  10  11  11  0.935716     97/100     NonOverlappingTemplate
 17   7   7  10   8  15   6   7  14   9  0.129620    100/100     NonOverlappingTemplate
  9   9   8  14   8  13   9  12   6  12  0.739918     99/100     NonOverlappingTemplate
 18   9  12   5  15  11   8   9   6   7  0.090936     98/100     NonOverlappingTemplate
 12   7   7   7  10  12  14  10  15   6  0.419021    100/100     NonOverlappingTemplate
  8  11  10   7  17   5  12   9  11  10  0.401199     99/100     NonOverlappingTemplate
 12  12  12  11   9   4  11  10   9  10  0.816537     98/100     NonOverlappingTemplate
  8  12   5   6  18  11   9   5   9  17  0.025193     99/100     NonOverlappingTemplate
  7   9  13  12  15   4   5  12  11  12  0.224821    100/100     NonOverlappingTemplate
  9  13  13  13  12   7   8   9   8   8  0.798139     99/100     NonOverlappingTemplate
 11   8  10   8   6  17  15  13   7   5  0.115387    100/100     NonOverlappingTemplate
 10   9   8  13  10  14   4  14   8  10  0.474986     99/100     NonOverlappingTemplate
  3   5  11  11   9  17  14   7  11  12  0.075719    100/100     NonOverlappingTemplate
  6  12   6  15  10  11   7   6  11  16  0.191687    100/100     NonOverlappingTemplate
  8   8   7   9  14  10   7  15  12  10  0.616305    100/100     NonOverlappingTemplate
 13   6   6   9  15  14   7  11  11   8  0.366918    100/100     NonOverlappingTemplate
 12  11  12   8  12   6  11   9  11   8  0.911413     99/100     NonOverlappingTemplate
 11  10  16   6  11  10   8  10  10   8  0.719747     99/100     NonOverlappingTemplate
 12   7   9  10  15  11   8   6  10  12  0.699313     99/100     OverlappingTemplate
  8  12  14   8  12   7  12  11   9   7  0.779188    100/100     Universal
 10   7   8  10   7  12  13  12  12   9  0.883171     96/100     ApproximateEntropy
  4   6   6   7   6   7   6   7   8   7  0.991468     63/64      RandomExcursions
  8  12   3   6   4   9   2   8   6   6  0.134686     63/64      RandomExcursions
  6   3   9   9   6   7   4   5   9   6  0.637119     63/64      RandomExcursions
  5   5   8   2   9   4   7   4   8  12  0.148094     64/64      RandomExcursions
  4   6   7   4   7   5   9   7   9   6  0.834308     64/64      RandomExcursions
  3  11   5   9   6   5   8   6   6   5  0.500934     64/64      RandomExcursions
  4   5   6   8   3   5   5   6  10  12  0.213309     63/64      RandomExcursions
  8   5   7   3   9   6   5   7   5   9  0.739918     62/64      RandomExcursions
  4   8   8  10   4   9   9   6   3   3  0.253551     64/64      RandomExcursionsVariant
  4   5   9   8   7   8   8   5   7   3  0.706149     64/64      RandomExcursionsVariant
  6   2   9   8   7   3   9   9   8   3  0.232760     63/64      RandomExcursionsVariant
  4   5   4   8   8   6   9   5  10   5  0.602458     62/64      RandomExcursionsVariant
  5   4   5   3   7   5  10  10   7   8  0.437274     63/64      RandomExcursionsVariant
  5   4   5   4   9   5  13   3   7   9  0.100508     63/64      RandomExcursionsVariant
  6   7   2   8   6   8   7  10   4   6  0.568055     63/64      RandomExcursionsVariant
  7   6   5   5   7   6   9   8   5   6  0.964295     63/64      RandomExcursionsVariant
  5   8   4   8   6   6   5   5   3  14  0.100508     63/64      RandomExcursionsVariant
  3   8   6   7   0   5  10   9  11   5  0.048716     64/64      RandomExcursionsVariant
  4   4   7   5  10   1   8   7  10   8  0.178278     64/64      RandomExcursionsVariant
  3   7   5   8   7   4   4   8   9   9  0.568055     64/64      RandomExcursionsVariant
  6   3  10   6   3   5   5   6   9  11  0.232760     64/64      RandomExcursionsVariant
  4  10   9   7   4   5   1   8   9   7  0.195163     64/64      RandomExcursionsVariant
  5  11   6  12   2   2   6   5   9   6  0.043745     64/64      RandomExcursionsVariant
  4   7  12   6   2   8   6   6   9   4  0.195163     64/64      RandomExcursionsVariant
  4   7  10   7   0   8   7   9   9   3  0.090936     63/64      RandomExcursionsVariant
  3   8   5  10   5   5   8   6   6   8  0.671779     63/64      RandomExcursionsVariant
 11  11   9  10   5  13   9  11   5  16  0.350485    100/100     Serial
 10  11  10   8   8   9  14   9  10  11  0.971699     99/100     Serial
  7  11  12  10  11   8  11  10  13   7  0.924076    100/100     LinearComplexity


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 60 for a sample size = 64 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


please visit russellcottrell.com